The generation of internal waves on the continental shelf by Hurricane Andrew

TitleThe generation of internal waves on the continental shelf by Hurricane Andrew
Publication TypeJournal Article
Year of Publication2000
AuthorsKeen TR, Allen S.E
JournalJOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume105
Pagination26203-26224
Date PublishedNOV 15
ISSN0148-0227
Abstract

Observed currents, temperature, and salinity from moored instruments on the Louisiana continental slope and shelf reveal multiple baroclinic oscillations during Hurricane Andrew in August 1992. These measurements are supplemented by numerical models in order to identify possible internal wave generation mechanisms. The Princeton Ocean Model is run with realistic topography, stratification, and wind forcing to extend the observations to Mississippi Canyon and other areas on the shelf. A two-layer isopycnal model is used with idealized topography and spatially uniform winds to isolate internal waves generated in and around the canyon. The combination of the observations and the results from the numerical models indicates several possible mechanisms for generating long internal waves: (1) near-inertial internal waves were generated across the slope and shelf by dislocation of the thermocline by the wind stress; (2) interaction of inertial flow with topography generated internal waves along the shelf break, which bifurcated into landward and seaward propagating phases; (3) downwelling along the coast depressed the thermocline; after downwelling relaxes, an internal wave front propagates as a Kelvin wave; and (4) Poincare waves generated within Mississippi Canyon propagate seaward while being advected westward over the continental slope. These processes interact to produce a three-dimensional internal wave field, which was only partly captured by the observations.

DOI10.1029/2000JC900137