A two-dimensional nitrogen and carbon flux model in a coastal upwelling region

TitleA two-dimensional nitrogen and carbon flux model in a coastal upwelling region
Publication TypeJournal Article
Year of Publication2002
AuthorsIanson D, Allen S.E
JournalGLOBAL BIOGEOCHEMICAL CYCLES
Volume16
Date PublishedMAR
ISSN0886-6236
Keywordscarbon, coastal, downwelling, export-flux, nutrients, upwelling
Abstract

{[}1] Coastal upwelling regions are associated with high primary production and disproportionately large fluxes of organic matter relative to the global ocean. However, coastal regions are usually homogenized in global ocean carbon models. We have developed a carbon and nitrogen flux model including all major processes both within and below the euphotic zone over seasonal to decadal timescales for coastal upwelling regions. These fluxes control surface pCO(2). The model is applied to the west coast of Vancouver Island, Canada (similar to49degreesN, 126degreesW). Net annual air-sea CO2 exchange and export flux of inorganic and organic carbon and nitrogen from the system to the rest of the ocean are estimated for different model scenarios. Model sensitivities are discussed. Results show strong biological drawdown of pCO(2) during summer and atmospheric CO2 invasion. However, this invasion is nearly balanced by gas evasion during winter. Therefore the region is a much smaller sink of atmospheric CO2 (6 g C m(-2) yr(-1), or equivalently 200 kg C yr(-1) per m coastline) than the summer season predicts. More significantly, there is a large flux of inorganic carbon (3 x 10(4) kg C yr(-1) per m coastline) from intermediate depth ocean water to the surface ocean via the coastal system compared to a small export of organic carbon (all dissolved) (2 x 10(3) kg C yr(-1) per m coastline) back into the lower layer of the open ocean. Thus we suggest that the dominant effect of coastal upwelling on the global ocean is providing a conduit for inorganic carbon to the surface ocean.

DOI10.1029/2001GB001451