Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface

TitleUse of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface
Publication TypeJournal Article
Year of Publication2005
AuthorsAmos RT, Mayer K.U, Bekins BA, Delin GN, Williams RL
JournalWATER RESOURCES RESEARCH
Volume41
Date PublishedFEB 2
ISSN0043-1397
Abstract

At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor-phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N-2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N-2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction-induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N-2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N-2 over Ar, in both the saturated and unsaturated zones near the free-phase oil, suggests reactivity of N-2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site.

DOI10.1029/2004WR003433