Peridotite and pyroxenite xenoliths from the Muskox kimberlite, northern Slave craton, Canada

TitlePeridotite and pyroxenite xenoliths from the Muskox kimberlite, northern Slave craton, Canada
Publication TypeJournal Article
Year of Publication2016
AuthorsNewton DE, Kopylova MG, Burgess J, Strand P
JournalCANADIAN JOURNAL OF EARTH SCIENCES
Volume53
Pagination41–58
ISSN0008-4077
Abstract

We present petrography, mineralogy, and thermobarometry for 53 mantle-derived xenoliths from the Muskox kimberlite pipe in the northern Slave craton. The xenolith suite includes 23% coarse peridotite, 9% porphyroclastic peridotite, 60% websterite, and 8% orthopyroxenite. Samples primarily comprise forsteritic olivine (Fo 89-94), enstatite (En 89-94), Crdiopside, Cr-pyrope garnet, and chromite spinel. Coarse peridotites, porphyroclastic peridotites, and pyroxenites equilibrated at 650-1220 degrees C and 23-63 kbar (1 kbar = 100 MPa), 1200-1350 degrees C and 57-70 kbar, and 1030-1230 degrees C and 50-63 kbar, respectively. The Muskox xenoliths differ from xenoliths in the neighboring and contemporaneous Jericho kimberlite by their higher levels of depletion, the presence of a shallow zone of metasomatism in the spinel peridotite field, a higher proportion of pyroxenites at the base of the mantle column, higher Cr2O3 in all pyroxenite minerals, and weaker deformation in the Muskox mantle. We interpret these contrasts as representing small-scale heterogeneities in the bulk composition of the mantle, as well as the local effects of interaction between metasomatizing fluid and mantle wall rocks. We suggest that asthenosphere-derived prekimberlitic melts and fluids percolated less effectively through the less permeable Muskox mantle, resulting in lower degrees of hydrous weakening, strain, and fertilization of the peridotitic mantle. Fluids tended to concentrate and pool in the deep mantle, causing partial melting and formation of abundant pyroxenites.

DOI10.1139/cjes-2015-0083